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NECESSARY CONDITIONS FOR CONTINUOUS PARAMETER 

STOCHASTIC OPTIMIZATION PROBLEMS 

He J. Kushner 

1. Introduction 

This paper applies the abstract  var ia t ional  theory of Neustadt 

[l] t o  obtain a stochastic maximum principle.  Since the papers of 

Kushner on the stochastic maximum principle [2], [3], a number of 

developments were reported i n  Brodeau [4], B a r n  [?I, Fleming [6], 

Sworder [TI - [8]. 
were not used exp l i c i t l y  i n  [2] - [8], and, with re la t ive  ease, we 

are able t o  handle greater var ie t ies  of s t a t e  space constraints then 

t reated i n  the references. 

c re te  maximum pr inciple  of Halkin [9] and Holtman [lo] appears i n  

Kushner [ll]. 

The ve r sa t i l e  mzthematical programming ideas 

A discrete  parameter analog of the dis-  

Even i n  the deterministic case, t he  a73ility t o  handle 

g e n e r a  constraints with r e l a t ive  ease gives the programming approach 

a d i s t i n c t  advantage over more d i rec t  approaches. 

It i s  premature t o  asser t  t ha t  the stochastic maximum principle 

w i l l  be useful i n  providing any deep understanding of stochastic con- 

t r o l  problems. Nevertheless, it seems l i k e l y  t h a t  the implicit  

geometric framework (at l e a s t  i n  the programming approach) w i l l  

suggest some useful  approximation or nmer ica l  procedures. The r e su l t s  

may serve as a departure point for a perturbation analysis as i n  the 

formal work [a], and the  nature and interpretat ion of the random 
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mult ipl iers  may shed additional l i g h t  on the  physical interpretat ion 

of the derivatives (we& or strong) of the minimum cost function 

which appears i n  the dynamic programming formulation for a f u l l y  

Markovian problerd. These various points are  under current investiga- 

t ion  for  both the present work and [ll]. 

Markovian problem, dynamic programming i s  not always applicable when 

there  are s t a t e  space constraints, and the al ternat ive programming 

formulation may be useful  t o  shed l i g h t  on the control problem. 

a discussion, for an elementary stochastic control problem of the 

relationship between randomized controls and singular arcs’ see [l3].  

Even fo r  an i n i t i a l l y  

For 

The problem formulation and mathematical background i s  given 

i n  Section 2. 

the l inear ized equations are  discussed i n  Section 4. 

derives a cer ta in  convex cone. The maximum principle i s  s ta ted i n  

Section 6. 

case and extensions are discussed i n  Section 7. 

A required r e su l t  of Neustadt i s  s ta ted i n  Section 3, 

Section 3 

The development i n  Sections 4-6 i s  f o r  the open loop 

2 .. Problem Formulation and Mathematical Background 

A Remark on Notation. 

Let  m( . , . )  denote an a rb i t ra ry  random function with values 

m(cu,t), 0 < t < T. 

cu vasiable. The term m ( t )  w i l l  be used for both m ( * , t )  and 

m(cu,t), and e i ther  m( . )  or m (degending on the context) w i l l  be 

The notation w i l l  be simplified by omitting the - -  

used for  .the random function m(., .). A random variable M ( - )  w i t h  
t 

.. . -- e%%.”-- 
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value M(u) w i l l  be wri t ten simply as M. 

Rn denotes an n-dimensional Euclidean space 

Assummstions. 

Let+ z ( = )  = (zo(*) ,  ..., zn<.))', o - -  < t < T be an n + 1 

dimensional normalized Brownian motion on the probabili ty t r i p l e  

(Q,P(*) ,g) ,  where R i s  the sample space, and P(-) the  measure 

on the a-algebra -@ on R .  For any f i n i t e  dimensional vector 

a = (al, ... ar) and matrix 0 = {cqij; i , j  = 1,. . .,r], define the 
2 2 2 2 

Euclidean norms la[ = c !ail , 101 = qij .  The control  i s  an 

n dimensional random function whose properties are  described i n  

(1-1) below. Let f ( - , - , . )  denote an R valued function on 

i i, j 
1 

n+ 1 

n 
X R X [O,T] and o(-, 0 )  an (n+l) x (n+l) matrix valued Rn+l 

function on R x [O,T]. Further properties of f(- ,- ;)  and 

G ( . ,  .) 

the  

ne 1 

are given i n  (1-2) below. The control  system of concern i s  

n + 1 dimensional s tochast ic  d i f f e r e n t i a l  equation (of the  I t6  

type) (1) on the  f ixed time in t e rva l  [O,T] 

The control  u( . )  and x(0) sa t i s fy  (1-1) below.? Write o(a,t) = 

[o,(aJt),.'.,an(a9t)], wnere ai(a9t) is  the ith column of o(a , t ) .  

&(t) = f (x ( t ) , u ( t ) , t )d t  + c rJi(X(t),t)dZi(t). 
i 

(2) 

+ The denotes transpose. 
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Rn+l Let h(.) be a r e a l  valued Borel function on f o r  which 

. --. 

Eh(x(T)) ex i s t s  f o r  the x(T) corresponding t o  any admissible control  

(see 1-1 below) a L e t  to,. . ., t for a fixed-Zateger k, denote a 

sequence of fixed times sat isfying 0 = t < tl < < tk+l = T. Let 

and bo and bl be given f i n i t e  numbers. Let -3 q i ( - , - ) ,  aoy . . . 
i = Oya..,k+ly j = 1, ..., ai 

-3 rT(*,*), j = 1,---, b 1, be r e a l  value6 Borel functions on R 

and define 

_ _  - __ -_  - - -- 

0 

9 %+l 
rv 

and r;(.,.), j = l,*..,b and 
0 

n + l  Rn+l 

'v 
a 

'v -1 - i  
q i ( - , - )  = (qi(- , . ) , . . . ,q i  (.,*))', and r (-,*) = 0 

admissible control (see I-l), l e t  t he  corresponding x( to) ,  . . . , ~ ( t ~ + ~ )  

sa t i s fy  El<i(x(ti),Ex(ti)) 1 < a, i = 0,. . .,k+l, and Elri(x(ti) ,Ex(ti))  1 
< my i = O,T, (properties guaranteed by (1-4) below). 

N 

The Problem. 

Assume (11-2), and the above properties on h,'YqiyTi. Define the 

cost  function 

In the 'class of admissible controls f o r  which the  corresponding 

t r a j ec to r i e s  sa t i s -  the  constraints  
., 

(4) qi(x(ti)) E E<i(x(ti),Ex(ti)) 5 0, i = 0,. . .,k+l 

ri(x(ti)) 
N 

Eri(x(ti),Ek(ti)) = 0, 5 = 0,T , 
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assume tha t  there i s  one, denoted by 

minimized (or  i s  no greater fo r  any other control in the c l a s s ) .  

It i s  assumed tha t  qO(x( '))  = 0 implies t ha t  xo(0) = 0. A s  

discussed below, more general constraints can be treated.  Let 2 

denote the corresponding optimal solution t o  (1). 

Uh, fo r  which %he cost i s  

Now, assume i n  addition, (I3-5), and f ind a necessary con- 

d i t ion  fo r  û and 2. 

Assumptions . 
(1-1) Let Bt, T > t > 0, denote a family of given a-algebras 

which are  non-anticipative with respect t o  the Wiener ~ ( e )  process. 

- -  

The gt we the data  a-algebras. x(0) i s  measurable on Bo and 

Elx(0) 1 < m. Let at denote a sequence of given non-empty n 

dimensional s e t s .  

collection of nl dimensional random functions u(*,*), w i t h  values 

u ( W , t )  i n  Qt at time t, and u ( . , t )  i s  measurable over gt. A s  

noted above, we w i l l  write e i ther  u or  u(*) for the function 

2 
1 - 

The family of adziissible controls, denoted by %, i s  the 

u( * , * )9  and u ( t )  fo r  e i ther  u(cu,t) o r  u ( - , t ) .  

(1-2) The f ( e , - 9 . )  and ai(.,.) a re  Bore1 functions of t h e i r  

arguments. f(*,@,t) and oi(*,t)  are  different iable  for  each fixed 

g, t ,  and t, resp.  Write f,(a,@,t) and ~ ~ , ~ ( a , t )  for the  matrices 

with i,kth elements &fj (a,@,t)/$ and ab. , ( (~, t ) /%~ resp. , and 
1J 

suppose tha t  both are  uniformly bounded. Assume If(a,@,t)l 2 

Ko(l+la] 2 ), lai(a,t)l 2 K,(l-t-lal 2 ), unifomnly i n  B E '?kt a d  

t E [O,T]. The function f(-,@,t) i s  continuous at each @ E. 9 and t 
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t E [O,T], uniformly i n  t. 

(1-3) For each f ixed t E (O,T] and gt measurable and %kt 

valued random variable  ut, there  i s  a 6 ( t )  > 0 so t h a t  for each 

6 < 6(t)  w i t h  the property t h a t  
N 

there  i s  a randcm variable 
N 

i s  measurable over each 9' and has values i n  each %ks where t-6 . U 

N 

s 6 [ t - G , t ] ,  and the sequence u t-6 s a t i s f i e s  

i n  probabi l i ty  as  6 3 0. Both Gt and 6 ( t )  may depend on ut 

and t. 
- 

Note. The condition of the l a s t  paragraph i s  included since - 
we w i l l  use piecewise constant and non-anticipative perturbations 50 

the optimal control.  Its i n tu i t i ve  meaning i s  simply t h a t  the e f f ec t  

of any random control  u which can be used a t  time t can be 

approximated by some random control  

time in  the small i n t e rva l  [ t -S, t ]  

t 
N 

utm6 which can be used a t  any 

(1-4) Assume tha t ,  f o r  any R n+l valued randam variable  v 

The &( e , O )  
and ;i( 0 ,  . ) and h( e )  a re  vector valued (except fo r  
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h(.), which is  r e a l  valued) Bore1 functions whose f i r s t  derivatives 
h h h h 

w i t h  respect t o  each argument ex is t .  Write qi xJ qiYe9 r r 
J i ,xy i ,e  

ry 

for the matrices of first p a r t i a l  derivatives of 

with respect t o  the f i rs t  and second arguments (a: and B) evaluated 

a t  Q = $(ti), f3 = EXh(ti), and suppose t h a t  they are square integrable. 

Write hx for  the gradient of  h(a) evaluated a t  Q ;(T), and 

suppose tha t  it i s  square integrable. 

qi(ay@) and li(a,B) 

h 

Define the l i nea r  vector valued operators Qi,Ri, and scalar  

valued operator H, a l l  on the space of square integrable n + 1 

dimensional random variables, as follows 

where 

square 

vector 

where 

v is an a rb i t ra ry  (n+l) vectorvalued randam variable with 

integrable caaponents. Let Q i  be the ith component of the 

valued functional Qi; F.e., Qiv j = E[ (9. +j ) I  *v + (E?. ))VI, 
1-7 
h 

=,x 
*j 
9i.x . i s  the gradient of qi(a,@) evaluated a t  a: = x( t i ) )  

h n+l 
@ = Ex(ti), and Qiv = c Qiv. For any square integrable R - 

J 
2 randm variable v, and any sequence v for which Elv -VI 3 n n 

1 

valued 

0, l e t  

as E +O. Assume t h a t  the components of the vector valued l i nea r  



8 

functional Ro are  l inear ly  independent, and similarly f o r  those of 

RT" 

(1-5) For the  inactive + inequality constraints qi(o), j suppose 

t h a t  there is some ci > 0 so  tha t  

q$(t,) + v) < 0 

2 for EIvl < ci. For each i suppose t h a t  there i s  a square integrable 

random variable vi so that f o r  each active cmponent q f ( - )  

we have 

of qi ( - ) ,  

3.  A Variational Result of Neustadt 

For future reference, we describe a var ia t ional  r e su l t  of 

Neustadt [l] . 
and l e t  Q be a set  i n  3 

Let _4/1 denote a loca l ly  convex topological space, 

Definiiion. For any integer p, l e t  P' denote the se t  of vectors 
U 

in R', {@: pi - > 0, 2 pi - < 13. Let K be a convex s e t  i n  9 vhich 
i=l , 

' q i ( * )  i s  active a t  $(*)  if q?(?(ti)) = 0.  Otherwise q$(ti)) < 0, 
1 

and the  constraint  i s  said t o  be inactive.  
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contains the or igin (0) and some point other than {O). For each 

p points, wl, a . . ,wp, of K, and a rb i t r a ry  neighborhood N of {0}, 

l e t  there  e x i s t  an c0 > 0 (depending on wl,. . .,wT and N) so tha t ,  

fo r  each E i n  (O,c0],  there  i s  a continuous map (p) from Pp 

t o  7 with the  property 

€ 

Then K i s  said t o  be a f i r s t  order convex approxiuation t o  Q. 

A Basic Optimization Problem. 

Let Q* be a s e t  i n  3 For some f i n i t e  given integers p and 

f3, l e t  c p i ( * ) ,  - f3 5 i < p, be r e a l  valued functions on 

an element $ i n  Qf which minimizes yo (  0 ) .  Ammg all the  points 

w i n  which s a t i s f y  the  constraints  cpi(w) = 0, i = 1,. . .,p, 

C ~ - ~ ( W )  5 0, i = 1,. . . ,B, f i n d  the element 

More precisely, we say t h a t  

t i o n  problem (or, more loosely, the  optimal solution) if,  for  s m e  

neighborhood 'N of {0}, cpo(w) > cp (G) for  a l l  w i n  $ + N which 

s a t i s f y  the constraints .  Let denote the optimal solution. The 

5 Find - 

h 

w which minimizes Q (w). 
0 

h 
w i s  a l o c a l  solution t o  the  optimiza- 

- 0  

constraints  

act ive constraints .  Define the s e t  of indices J = {i: cp . (w) = 0, 

i > 0 )  c j  ( 0 ) .  

cp . ( a ) ,  i > 0, f o r  which cp . (G) = 0 are  ca l led  the 
-1 -1 

h 

-1 

The Basic Necessary Condition for Optimality. 

First we co l l ec t  some assumptiom 
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A 
(11-1) The q ~ ~ ( . ) ,  i > 1, are  continuous a t  w. There a re  - 

continuous and l i n e a r l y  independent f'unctionals 

following property. For any element w E and any bounded sequence 

w converging t o  w i n  9; we have [cpi($++wn) - cpi($)]/c J,(w) as 

E 4 0 :  

a,, e " J  J p  with the  

n 

(11-2) There is  a neighborhood N of (0) in  7 so t h a t  

cp .(%w) < o f o r  w E N, and a l l  inact ive constraints cp .J-). 
-1 - 

(11-3) Let the  act ive constraints  and also c p o ( * )  be con- 

tinuous at  $. 

md convex functionals ci(*) with the property tha t  f o r  any w E 

and any bounded sequence w converging t o  w i n  

For the  act ive constraints,  l e t  there ex i s t  continuous 

n 

as e +O. Assume t h a t  there  i s  some w and some j 6 J f o r  which 

c.(w) > 0. L e t  there  be a w f o r  which c.(w) < 0 for a l l  j E J. 
J J 

A case of pa r t i cu la r  importance i s  where the  d i f f e r e n t i a l s '  ci(.) 

are  l i n e a r  functionals.  

implied by the  l a s t  sentence of (11-3). 

men the next t o  l as t  sensence of (11-3) is  

We now have a par t icu lar  case of (Neustadt [l], Theorem 4.2). 

The l o c a l  or optimal solution here i s  ca l led  a t o t a l l y  regular l oca l  

solution i n  [l]. 

A Theorem 1. Assume (11-1 - 11-3). Define Q 3 Q' - w. Let be a 
___p - 
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l o c a l  solution t o  t h e  optimization problem. Then there ex i s t s  

not a l l  zero with a < O  f o r  i > 0, so %9 *Yap2a09a ,19  * e -i - - - - 
t h a t  
_I_ 

L l  

for a l l  w i n  z9 where K i s  a first order convex approximation t o  - - 
and E i s  the  closure of K i n  3 Qr - - 

Remark. Let  (pi(-) E 0, i > 0. If there  i s  a w E K f o r  

which c . (w) < 0 f o r  a l l  act ive j ,  then a. < 0, and we can get 
J 

a. = -1. 

Ident i f ica t ion  with the  Stochastic Control Problem. 

For the  problems of the sequel we define 7 t o  be the  loca l ly  

convex l i n e a r  topological space of (n+l)  dimensional random func- 

t i ons  v with, values v (m, t )9  where vn + 0 i n  7 if  and only if  

for each t i n  [O,T]. "he set Q' is  defined t o  be the s e t  of 
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conditions sat isfying (1-1). 

[q i )  are  ident i f ied with the (g,&, 1 > 0) and the 

(equality constraint)  functions (d) with the (pQ, & > 0) of 

Section 3 .  Also  g(x)  = Exo(T) + Eh(x(T)). x i s  the optimal element 

of Qr  and Q Q' - (2). Conditions (1-1) - (1-5) imply (11-1) - 

x( . , . ) ,  0 < t < T t o  (1) for  a l l  controls and i n i t i a l  

The (inequality constraint) functions 

- -  

A 

(11-3) - 
With the framework of constraints (4), we can include constraints 

ti 
such as 

P[x(t) E A) < di, where A has a smooth boundary. More general 

inequality constraints than (4) c m  be included, once the  appropriate 

gi(x(s))ds 5 di and can approximate constraints such as 
0 

- 

l inear  or convex d i f f e ren t i a l s  c (see 11-3) are  calculated. i 

4. The Linearized Equations 

Consider the It: stochastic d i f f e ren t i a l  equations (6) and (7), 

where 0 < T i s  fixed and t s a t i s f i e s  T < t < T, and cP(t,.t) i s  

an (n+l) x (n+l) randm matrix" 

- - -  

- - + It i s  easiest  to work i n  the space of random functions 

is  described above. 

7, as it 

By (I-l), (I-2), we lose notking by a l t e r ing  
I n  t h i s  so t h a t  vn + 0 if  E1vn(a,t)IP + 0 

cas? the  quadratic estimates (1-4) on qi and ri can be replaced 

by lqi(x(ti))l 5 Ko(l+Elx(ti)  I p ) ,  e tc .  More general s i tuat ions are  
obvioudy possible and, i n  particular,  the Lipschitz and growth con- 

d i t ions  on the zeroeth component of f(a,,B,t) can be relaxed. 

fo r  any p - > 2. 

A 
++ 

2 denotes the random matrix gX(2( t ) ,u ( t ) , t ) ,  and similar ly  
X f o r  
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d@(t,T) = fx@(t,T)dt -+ dzi( t )a  i,x @( t ,~) ,  
i 

where, by assumption, @(T,T) = I, the identity,  and also by assumption, 

Ely(a)’l < 03 and y ( ~ )  i s  independent of z ( t )  - z(s), for  a l l  

t > s > T. 

w.p.1, w i t h  f i n i t e  mean square values. 

continuous version of cP(t,z) i s  measurable i n  (tp) for each T. 

The uniqueness of the solution, t o  (6) implies that ,  fo r  each 

T E [O,T], w.p.1, 

2 

Both (6) and (7) have unique continuous ( in  t) solutions - -  
We can suppose tha t  the chosen 

Furthermore, if  we f ix  t and l e t  T vary i n  the range 

0 < T < t, @(t ,z )  i s  mean square continuous i n  

t E: [T,T]. Indeed, we have w.p.1, t h a t  @(t,.c+c) and @(t,z)  are 

the solutions (w.p.1) of (7) which start a t  time 

vdues I and @(T+E,T),  resp. By known estimates f o r  solutions of 

stochastic d i f f e ren t i a l  equations, f o r  some r e a l  

7, uniformly i n  - -  

T + E with i n i t i a l  

i’ K 
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4 2 
E ~ @ ( T + E , T )  - 11 - < IC1€ 

and, hence, f o r  t i n  [T+E,T] 

Equation (8) implies t h a t  there  i s  a continEous version of @(T,T) 

(Proposition 111.5.3 of [14]) ( T  

Finally, i f  Ely(O)l = O ( E  ) (or O ( E  )), then Ely(t)l = O ( E  ) 

(or O ( E  )). This las t  fact  w i l l  be used frequentky i n  Theorem 2. 

i s  the  parmeter,  0 < T < T) . - -  
2 2 2 2 2 

2 

5.  The Convex Cone K 

+ 
We w i l l  require the  following lemma. 

R + I  Lemma 1. Assume (1-1) - (1-2). L e t  @(e,.) be a R valued - - - - 
measurable function with values @((~,t), 0 < t < T. Sumose that 

'P(cu,*) i s  LebesgJe integrable on [O,T] 

Then the  function F(. , e )  defined by 

fo r  almosit, a l l  f ixed a. 

is different i2  l e  w i t h  respect t o  t on an (cu,t)  set of fill 

measure with der ivat ive @(u,t). Thus, there  i s  a nul-1 s e t  

.---. 

+ The proof of Lemma 1 resul ted  from a discussion wi%h W. Fleming. 



T1 C (0,T) so tha t ,  a t  each t { T1, F(o, t) is different iable  with 

derivative @(a,t), w.p.1. In particular,  i f  we define @ ( e , . )  by 
-..L- 

~J(CU,S) = f(f(s),G(s),s) 

t+€& 

and l e t  %,% E any scalars, we have 

- - - 

L 

-I 1 
E: t--€cXl 

f&s),G(s>,s)ds - (g+ol,)f(at),G(t),t) 4 0 

- _  - ._ 

T1' w.p.1, for any t not i n  some nu l l  s e t  

There i s  a n u l l  s e t  T2 C (0,T) so t h a t  for  any t f T2 and 
fi, 

- 
J. any R valued random variable v, 

7 

Proof. For arb i t ra ry  scalars  %,%, define the function Fr (e ,*)  - 

where r i s  r a t iona l  in  [ O , l ] .  There i s  a nu l l  (u set No so that ,  

f o r  o) { No, @(a,*) i s  Lebesgue integrable on [O,T] and, hence, fo r  
-_ 

b N,, 

for almost a l l  t (the nu l l  t s e t  depending on (u) . Also Fr(a,t) 

w 
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converges t o  (%+%)@(colt) on a measurable se t  S C (&No) x [O,T] 

as r + 0. If F,(w,t) converges as r 0 through the rationals,  

it converges t o  the  same l i m i t  as r + O  through any sequence. 

The Lebesgue measure of the fixed w sections of S (for 

w j!. No) i s  T. Hence by FubLni' s tbeorem, the measurable se t  S has 

f u l l  measure. Thus, there i s  a n u l l  t s e t  T1 so t h a t  f o r  

t T1, Fr(u,t) 4 (g+ao)@(a,t) w.p.1. The statements of the f i rs t  

paragraph of the lemma follow from t h i s .  

Let g( 0 ,  a )  with values g(v, t) denote a Bore1 function from 

I? x [O,T] 

Let g(v( t ) , t )  be integrable on [O,T] fo r  any Rm valued continuous 

function v( t ) .  Then there i s  a n u l l  s e t  T2 so that, f o r  t { T2 

and any continuous v(.) f'unction, 

t o  R n+l which i s  continuous a t  each v, uniformly i n  t. 

as + 0. The second paragraph of the lemma follows from t h i s  by 

defining g( e, 0 )  t o  be f ( ~ ( w , t ) , v ( a ) , t )  = g(v(u,t) , t) ,  where 

g(v(w,t),t), where v(u,t) = ($(co,t),v(w)) and noting the continuity 

( in  (a,v)) properties of f (a,v,t) which were assumed i n  (1-2). Q.E.D. 

The Ccnvex Cone .K. 
- - 

h + "  For any fixed s i n  the se t  [O,T] - T, where T = T1 U T2, and 

any ravfiom variable u which i s  gs measurable and has values i n  s 

+ The Ti are defined i n  Lema 1. 



%s, define the  element 6x of Following our usual notation, 
%Us 

we use 6x (t) fo r  e i the r  6x (-,t) or 6xs (a,t) 
' s  B U  

%Us 9 s  

T > t > s .  - -  

Let K denote the s e t  of convex f i n i t e  combinationsof points of 

the type co@(t,0)6x(0), where co i s  a rb i t ra ry  i n  [O,oo) and Sx(0) 

i s  an a rb i t ra ry  admissible condition, and points of the type , 
where c i s  a rb i t r a ry  i n  [O,co) and s i s  a rb i t ra ry  i n  [O,T] - T, 

, 

c6xs 
' nS 

and us i s  an a rb i t r a ry  9' measurable, valued random variable .  

Llef ine 

6xo(t) = cP(t,O)Gx(O). 

- 

By Theorem 1, K i s  a first order convex approximation t o  the s e t  Q' - 
C$] &. 

Theorem 2. Assume (1-1 - 1-3). Then X i s  a f i r s t  order convex 

approximation t o  Q 3 Q* - &. 
_____I 

Proof. Let m denote an arbi t rary,  bu t  fixed, integer.  Define the 

se t  A 5 ( h  = (Al,. . ., rn 
i 

denote any m elements of K. Then, there  i s  an integer q, a s e t  of 

- 
h ): hi > 0, c hi < 1). Let 6x ,".., 6xrn - - 
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valued and 9 measurable e .  
1 1 

f ixed  times 

random variables u 

p . .  > 0, and admissible i n i t i a l  conditions s,6(0), i = l,...,q, so  t h a t  

each 6x has the  representation 

si, i = 1 ,... ,q, a s e t  of s.  

(writ ten ui), i = 1,. . . ,q,  and a se t  of gij - > 0, 
si 

1J - 
i 

rv 
We assume t h a t  s. < s Any element in K, the convex h u l l  of 

1 - i+l' 
1 m (O,& , . . .,6x ), corresponds t o  same A E A (and conversely), and has 

the  form 

m m - -  
6t.(A) = c Bijhi, S j ( h )  = c Bijhi. 

J i=l j =1 

Note t h a t  E.Gti(h) = 6-ki(ch) f o r  any sca la r  E > 0, and s imilar ly  f o r  
- 2  8Ti(h). Let O ( E  ) denote any random function vE for which - 

Elv,(t)l 2 = O(E 2 ) E t E [O,T], and write v = ;(E 2 ) if ' E l v E ( t ) 1 2  = 
E - 

2 
O ( E  ) for  each t E [O,T]. To prove the theorem we aus t  show -that 

there  is  an E* > 0 so t h a t ,  f o r  eacn E < there i s  a continuous 

aap f (A) from A i n to  7 of the form 
E 

h fp) = x + E6X + p A €,A 



where p = 
E, A 

Next, a 

be described. 

perturbed control and perturbed i n i t i a l  condition w i l l  
A 

Suppose first t h a t  the si are d i s t inc t  and s T = i 

T1 U T2. Define T z sup 6ti(A)-q, and the se t  Ii(cA) 
i, A d  

I+) Ct: s - €Eti@) < t < Si]. i - 
For each us E ui, l e t  6(s.) be the interval  which was defined i n  

(1-3) (corresponding t o  u ).  There i s  an > 0 so tha t  f o r  

E < eo we have (i): the Ii(cA) are  d is t inc t ,  (E): a l l  si - ET > 0, 

(iii) 

1 i 

i S 

-\ 
- 

ET < min [ 6(sl), . . . , 6(sq) 3. Define the perturbed control - 

w 

= u  t- E I@), s -E?' . i  

corresponds t o  u by (I-3), and as E -+ 0, ( 5 )  of 
i s -ET S 

where 5 . 

i 
(1-3) holds 

If the  si a re  not d i s t inc t ,  we follow the method fo r  the 

deterministic problem ~ 1 6 1  and define zi by 

- .  
0 . .  = s 

i+l 9 
= 6ti(h) + o . o  + 6tq(A) i f '  si = s i 
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and Ii(ez) by 

= ( t :  s - E ( 8 t i ( A )  + * e *  + 6 t r ( A ) )  i 

Then define uEA(t)  88 i n  (10). Thus, if  some 8. are identical ,  

the intervals  a re  sh i f ted  t o  the l e f t .  
. 1  

I -. . L -  - -- . _  - - - - _  -__  _ -  - 

By (1-1) and (1-3), the perturbed control u i s  admis‘sible. Eh 

EA 
Let xsh E 7 denote the solution of (1) f o r  control u 

i n i t i a l  condition 

~ 

and 

where we use 

€8XA(O) = SXEA(O). 

Define 

Fix c: i n  (0,~~). Let h(n)  4 h i n  A, as n + m. Then 
2 

E ~ x ~ ~ ( ~ ~  (0) - ~ ~ $ 0 )  I + 0, and the t o t a l  Length of the intervals  01: 
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(t) # uEh(t) converges t o  zero. These facts  imply tha t  

(t) - xEh(t)  l 2  + 0 for each t, which implies the continuity 
(4 which u 

EjxcA(n) 
of 5 (A) fo r  each E < E ~ .  We need only prove the expansion ( g ) ,  

and t h i s  w i l l  be done i n  three par ts .  

E 

lo. Let Ki denote r e a l  numbers. We have the following 

relat ions _ .  _._ - _  

(13a) &(t) = f (f;(t), Uh(t),t)dt + c dzj  (t)crj (Xh(t),t) 
j 

- 

Using standard estimates for  solutions of I t6 stochastic d i f f e ren t i a l  

equations it can be shown that ,  fo r  some K < ce, 1 

N e x t ,  WE define ;(%) z(t) - x (t) and ~ b o w  t ha t  
EA 
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- - A  - 

uniformly i n  t. Equation (15) holds for t = 0. Assume it holds 

fo r  t = to, and tha t  uEh(t) = Uh(t) 

show tha t  (1.5) holds uniformly ir! [to, tl] . 
t = e. - cp, we show that it holds uniformly i n  

any r e a l  p f o r  which s. - EP > 0. These two facts  imply (13) a8 

asserted.  Let x ( t )  G xEh(t) - G ( t ) .  Then, 

f o r  t E [to,tl]. We w i l l  

Then, i f  (17) holds at 

[si-cp,si], for  ' 1 

1 - 
N 

2 2 where Elg(to)[ = O ( E  ). By standard estimates, stochastic d i f f e ren t i a l  

equations, 

F 

which implies (13 i n  [to,tl]. Next, write 

_ .  . -  I_ 

Using the Lipschitz condition on 6, and Schwarz's inequalityon the 

drift term, gives 
-.. . - -.. 
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2 2 1 

Using (14) and the  growth condition I f 1  < Ko(l+lxl ) i n  (1-2) gives - 
t EI;(t)l2 < KjEl'Vx(si-~p)l2 + K 4 t  2 + - 

from which (15) follcws i n  [s i i - fp,  

By reasoning c lose  t o  t'ne foregoing, it can be shown t h a t  

uniformly i n  t E [O,T] . 

2'. Next, it w i l l  be shown t h a t  

by the method used t o  show (15). 

t E [to,tr] and (17) holds for  t = to. Write y( t )  5 xeh(t)  - 
f(t)  - yEh(t) 

Suppose G ( t )  = uEh(t) i n  
cv 

men, f o r  t G [to, tl], 
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Iv h 
where, for x(s) x(s)  - x(s) ,  we define 

t c dzj(s)[a  (.^(s) + $(s)f(s),s) - u (~(S),S)]~(S) 
j ,x j yx 

.. . -  -- - 

where cp( 9 )  and $( 0 )  are  scalar  valued random functions with 

values i n  [O,l]. By (15) and the  continuity ( in  a) and bounded- 

ness properties of fx(a,p, s) and uiyx(CXys)y 

uniformly in  t. With t h i s  estimate (17), eas i ly  follows from (18) i n  [to,tl]. 
Iv 2 2 Next write 8 t i ( A )  = pi and l e t  EIY(S~-ET~)I = O(E ). 

For t E [ S ~ - E T  s -ET.+EP.] write 
i J i  1 1 'S ~. -1 



.- 

(19) can be written as 

- . -  

where we define 

t 

s -€T 3 i i  

+ I  c dz.(s)[a.(xEh(s),s)  J J - o j ( ~ ( s ) , s ) ]  + e,(t) 
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2 2 Using EIyEh(s)I = O ( E  ) uniformly i n  E we get, f o r  t i n  the 

desired interval,  

and similarly for the  f i r s t  term of 

estimates f o r  the two integrals  i n  (20), 

e (t). Using t h i s  and the 3 

and (15), gives (17) i n  [ s  -ET s -ET + €pi]. i i J i  i 

3'. To complete the proof, it only remains to show t h a t  

2 2 
(21) El YE#) - 6XEA(t)I = 0 ( E  1 

(21) holds f o r  t = 0, and indeed, (21) is zero for 

t E [O,S~-ET~]. If (21) holds a t  to, then it i s  t rue i n  [to,tl] 

if u,^(t) = G ( t )  i n  [to,tl],~ since w.p.1 



Next, for  t E [si-€Ti, si-m 3- €Pi], where p .  = G t i ( A ) ,  i 1 

where we define 

E E 1 2 
i 1 EA 0 EA 0 

Let Ji E Ji(s - E T ~ + E ~ . ) .  

u 

If y (t ) = y (t ) + $(E ), and 

(t> = G ( t ) ,  t E [to,tl], then, w.p.l., EA 

€ 2  2 Furthermore, E I J i ( t ) l  = O ( E  ) uniformly i n  t, and @(Lap1, 2 - q 2 )  4 

@(t,?) i n  proba3ili ty as E + 0, for any constants cp1,cp2. 
L -  __ - - -- 

The l a s t  paragraph implies t ha t  w.p.l., f o r  t f U I y ( E h ) ,  
__ - . - - ._ I- - -  - --- - - - -  - _  

where I ~ ( E A )  i s  the in te r ior  of I i ( ~ A ) ,  

E 2 
(24) y,(t) = @(t,si)Ji + Q(t,0)6xEA(0) 3. Z ( E  ) .  

t>si 

Define 

Ji = 8 [f ($(s) ,ui, s) - f (G( s) ,G( s )  s)]ds 
S , - E T ,  
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e 2  2 
Then (1-3) implies t ha t  E/Ji-J.I 1 = O ( E  ) .  Thus (24) i s  val id  for  

i' a1 Ji replacing Ji. By Lemma 1, ( l e t t i ng  % = -T. 1 + p = Ti) 

w.p.1. as E: +O., 

Thus, f o r  t { UIP(EA), 

I 

(25) + @ ( t , O ) 8 X E A ( O )  + S ( E 2 )  

2 = 8XGh(t)  + Z ( €  ). 

0 Since the se t s  Ii(d) decrease t o  the empty s e t  as E +O, (25) 

holds for all t E [O,T]. Q.E.D. 

6. The Maximum Principle 

__ _ _  
I 

Cmbining Theorems 1 and 2 we get Theorem 3 .  Define the  n + 1 

dimensional column vector P (l,O,...,O}r. Theorem 3 reduces to the  

Pontriagin maximum principle, if the noise is absent (a E 0). 
_ .  . -  --- . . - 

Theorm 3 .  Assume (1-1) - (1-5). There a re  continuous (in t) versions 

of @(T,o) ,  @(ti,*) (for t < T and t < ti, resp.) .  There i s  a 

--- I 

- - - __. - - 
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sca la r  

j = 0 i f  qi(2) < 0, and vectors b b,, not a l l  zero, and ai) where ai 

a n u l l  s e t  ? E [O,T] 

%t valued random variables 

0 < 0, vectors ai ..- < 0, i = 0,1,. . .,k+l, (non-positive components - 
3 - 0' 1 

s o  t h a t  for  a l l  t { 5, and a l l  gt measurable, 

x(O),  (26a and b) hold ut, and admissible - -9 

w.p.1. 

OEIP+hx(P(T))] I @  (T, t) f c aiE[qi,x+Eqi,e]@(ti, h A t) 

i:t.>t I 1 

+E? ] @ ( T , t )  f(x"(t),ut,t) - f ( G ( t )  
+ b ~ E [ r ~ , x  T,e 

h 

A 

0E[ P+hx (cT) ] 0 (T,O) + c a j E [  $i,x+Eqi, e]@ (ti, 0) 
i 

I 
+ b;F[$ +E$ ]@(T,O) + b;E[c +E; ] 16x(O) T,x T,e o,x o,e < o  - 

(26%) implies t h a t  t he  term i n  braces i n  (26%) i s  zero. 

vector p(T)  by i t s  transpose (27) 

Define the - 

3efine t h e  n + 1 dimensional random function p ( t ) ,  t < T by - 
i t s  transpose (28). 

with the  use of (27-8), (26) can be wri t ten as 
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E[p'(O) + b'$o,x+E? )]Sx(O) = 0. 
O,e (29b) 

Furthermore, FT. p .1 

Proof. 

ident i f ica t ion  of t he  (continuous i n  

Qi,Ri with the  c ,4 i n  Theorem 1, and the f a c t  t h a t  K i s  a f i rs t  

order convex approximation t o  Q' = 6, - x . by Theorem 2.  Also the  

(continuous i n  

E[P+hx($(T)]' Sx(T), i s  ident i f ied  with co. Equation (29)  follows 

from (26) upon using the  subst i tut ion (27), (28). 

suppose th'at (3Oa) i s  violated on z gt measurable s e t  Bt with 

P(Bt) > 0.  Define 5 on Bt, -it = u ( t )  on 52 - Bt. Then 

(29a) i s  violated with the admissible u replacing the u there .  

A similar proof y ie lds  (3Ob).. Q.E.D. 

The proof of (26) follows from Theorem 1 using the  appropriate - 
by (1-4)) components of 

jy  j 
h 

7 by (1-4)) l i n e a r  operator which acts on 8x(T) i n  

To prove (3Sa) 

h 

t = Ut 

t t 

7. Extensions t o  Closed Loop Systems 

Thus f a r  the  admissible controls a re  defined t o  be measurable 

t '  on the  a p r i o r i  given a-algebra -@ If the admissible controls a r e  



assumed to depend expl ic i t ly  on the s t a t e  - or on i t s  past  values, 

i .e . ,  u ( t )  = u(x ( t ) , t )  o r  u ( t )  = u(x s < t,t), then a very similar 

development can be carried out provided e i ther  the Lipschitz condition 

s’ - 

or  the generalized Lipschitz condition, 

+ f o r  a bounded neasure m(.), hold. Indeed, with the use of the 

perturbed controls and a convex cone 

we obtain Theorem 3 ,  with the exception tha t  the 

yEA(t) and cP(t,.c) equations are replaced by f -I- fu#ux. In 

K of  the type used i n  Theorera 2, 
h 
fx terms i n  the 

h A h  

X 

part icular ,  l e t  the  data  available t o  the control a t -  time t be 

g(x(t) , t) ,  where g ( - , . )  i s  a Borel function satlisfying (31) with 

values i n  some Euclidean space and Ig(a,t)l < K (1-1-lal ) .  Let the 

class of admissible controls %k be the family of Borel functions 

2 2 
- 0  

N 

u(0, 0 )  with values u(g(x( t ) , t ) , t )  and which s a t i s f i e s  (31), and 

which has values i n  at at  time t. Let x ( 0 )  sa t i s fy  the 

relevent par t s  of (1-1)- Let (1-2) hold f o r  adiiissible u. The 

convex cone i s  composed of elements with values ( for  a laost  a l l  s >  

4- For nore d e t a i l  on the more general stochastic d i f f e ren t i a l  delay 
system, see [15]. 
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For each t and admissible u, it i s  supposed t h a t  there  i s  a con- 

tinuous function u( a ,  .) 

f o r  a l l  g and IG(g,t)l 5 Ko(l+lg12) such t h a t  u(g,s) = z(g ,s ) .  

(This i s  not a s ign i f icant  r e s t r i c t ion . )  

.-.a 

(of g , t )  sa t i s fy ing  (31) w i t h  'Uu(g,t) E '?dt 
2 

Let Gi(g,t) be a function which s a t i s f i e s  the conditions on 

1 i' 
n.4 

ui(g,t) above and reduces t o  u(g,s.) a t  t = s In  (lo), l e t  

u t = :i(g(x(t), t), t) i n  Ii(cA). Then, under the additional 

conditions (I4-5), Theorem 3 holds with the  conditioning on 

placed by conditioning on 

€A) 

gt re- 

We have not given more d e t a i l s  g($(t), t) .  

on the  extensions t o  s t a t e  dependent controls, since attempts t o  

extend the method t o  amore general class of controls, whose members 

may be discontinuous i n  the s ta te ,  have f a i l e d  so  f a r .  
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